Deepin简介
Deepin是由武汉深之度科技有限公司开发的Linux发行版,Deepin 为所有人提供稳定、高效的操作系统,强调安全、易用、美观。其口号为“免除新手痛苦,节约老手时间”。
cuda安装
下载
按照系统的版本下载对应的cuda版本,下载地址:https://developer.nvidia.com/cuda-downloads
安装
注意执行安装文件的时候一定要加上’–override’,不然会出现错误:’”Toolkit: Installation Failed. Using unsupported Compiler.”‘1
2chmod 755 cuda_7.5.18_linux.run
sudo ./cuda_7.5.18_linux.run --override
如果你电脑里已经装好比cuda内置的NVIDIA驱动更新的版本,那么在安装的时候就不要选择安装NVIDIA驱动。
安装过程的设置如下所示:1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19-------------------------------------------------------------
Do you accept the previously read EULA? (accept/decline/quit): accept
You are attempting to install on an unsupported configuration. Do you wish to continue? ((y)es/(n)o) [ default is no ]: y
Install NVIDIA Accelerated Graphics Driver for Linux-x86_64 352.39? ((y)es/(n)o/(q)uit): n
Install the CUDA 7.5 Toolkit? ((y)es/(n)o/(q)uit): y
Enter Toolkit Location [ default is /usr/local/cuda-7.5 ]:
Do you want to install a symbolic link at /usr/local/cuda? ((y)es/(n)o/(q)uit): y
Install the CUDA 7.5 Samples? ((y)es/(n)o/(q)uit): y
Enter CUDA Samples Location [ default is /home/kinghorn ]: /usr/local/cuda-7.5
Installing the CUDA Toolkit in /usr/local/cuda-7.5 ...
Finished copying samples.
===========
= Summary =
===========
Driver: Not Selected
Toolkit: Installed in /usr/local/cuda-7.5
Samples: Installed in /usr/local/cuda-7.5
环境设置
打开~/.bashrc1
gedit ~/.bashrc
添加下面两条语句:1
2
3
4
export PATH=$PATH:/usr/local/cuda/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/lib64
强制cuda使用gcc 5
因为cuda默认不使用gcc>4.8,通过注释掉报错行来强制使用gcc 5。1
2
3
4sudo gedit /usr/local/cuda/include/host_config.h
//注释掉115行
//#error -- unsupported GNU version! gcc versions later than 4.9 are not supported!
运行cuda内置的例子
为了测试是否安装成功
进入内置例程1
cd /usr/local/cuda/samples/1_Utilities/deviceQuery
编译1
make
运行1
./deviceQuery
得到结果:1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39CUDA Device Query (Runtime API) version (CUDART static linking)
Detected 1 CUDA Capable device(s)
Device 0: "GeForce GT 520M"
CUDA Driver Version / Runtime Version 8.0 / 7.5
CUDA Capability Major/Minor version number: 2.1
Total amount of global memory: 1024 MBytes (1073414144 bytes)
( 1) Multiprocessors, ( 48) CUDA Cores/MP: 48 CUDA Cores
GPU Max Clock rate: 1480 MHz (1.48 GHz)
Memory Clock rate: 800 Mhz
Memory Bus Width: 64-bit
L2 Cache Size: 65536 bytes
Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65535), 3D=(2048, 2048, 2048)
Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers
Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total number of registers available per block: 32768
Warp size: 32
Maximum number of threads per multiprocessor: 1536
Maximum number of threads per block: 1024
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size (x,y,z): (65535, 65535, 65535)
Maximum memory pitch: 2147483647 bytes
Texture alignment: 512 bytes
Concurrent copy and kernel execution: Yes with 1 copy engine(s)
Run time limit on kernels: No
Integrated GPU sharing Host Memory: No
Support host page-locked memory mapping: Yes
Alignment requirement for Surfaces: Yes
Device has ECC support: Disabled
Device supports Unified Addressing (UVA): Yes
Device PCI Domain ID / Bus ID / location ID: 0 / 1 / 0
Compute Mode:
< Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 8.0, CUDA Runtime Version = 7.5, NumDevs = 1, Device0 = GeForce GT 520M
Result = PASS
如果编译出错,检查是否有强制设置gcc 5来编译;如果输出结果为fail,说明没有检查到显卡,解决方案是升级你的NVIDIA驱动,确保你电脑的NVIDIA驱动版本要不低于cuda的内置版本。
设置Keras运行于GPU模式
方法一
使用如下命令行运行1
THEANO_FLAGS=device=gpu,floatX=float32 python my_keras_script.py
方法二
设置$HOME/.theanorc文件
添加如下所示文件1
2
3
4
5
6
7
8
9[global]
floatX = float32
device = gpu
[lib]
cnmem = 0.9
[cuda]
root = /usr/local/cuda
方法三
在你的代码前面,加上如下所示代码:1
2
3import theano
theano.config.device = 'gpu'
theano.config.floatX = 'float32'
我们来运行Keras里的一个用于电影评论情感分析的例子imdb_cnn.py,第一次运行时需要联网,要下载数据库。1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75'''This example demonstrates the use of Convolution1D for text classification.
Run on GPU: THEANO_FLAGS=mode=FAST_RUN,device=gpu,floatX=float32 python imdb_cnn.py
Get to 0.835 test accuracy after 2 epochs. 100s/epoch on K520 GPU.
'''
from __future__ import print_function
import numpy as np
np.random.seed(1337) # for reproducibility
from keras.preprocessing import sequence
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation, Flatten
from keras.layers.embeddings import Embedding
from keras.layers.convolutional import Convolution1D, MaxPooling1D
from keras.datasets import imdb
# set parameters:
max_features = 5000
maxlen = 100
batch_size = 32
embedding_dims = 100
nb_filter = 250
filter_length = 3
hidden_dims = 250
nb_epoch = 2
print('Loading data...')
(X_train, y_train), (X_test, y_test) = imdb.load_data(nb_words=max_features,
test_split=0.2)
print(len(X_train), 'train sequences')
print(len(X_test), 'test sequences')
print('Pad sequences (samples x time)')
X_train = sequence.pad_sequences(X_train, maxlen=maxlen)
X_test = sequence.pad_sequences(X_test, maxlen=maxlen)
print('X_train shape:', X_train.shape)
print('X_test shape:', X_test.shape)
print('Build model...')
model = Sequential()
# we start off with an efficient embedding layer which maps
# our vocab indices into embedding_dims dimensions
model.add(Embedding(max_features, embedding_dims, input_length=maxlen))
model.add(Dropout(0.25))
# we add a Convolution1D, which will learn nb_filter
# word group filters of size filter_length:
model.add(Convolution1D(nb_filter=nb_filter,
filter_length=filter_length,
border_mode='valid',
activation='relu',
subsample_length=1))
# we use standard max pooling (halving the output of the previous layer):
model.add(MaxPooling1D(pool_length=2))
# We flatten the output of the conv layer,
# so that we can add a vanilla dense layer:
model.add(Flatten())
# We add a vanilla hidden layer:
model.add(Dense(hidden_dims))
model.add(Dropout(0.25))
model.add(Activation('relu'))
# We project onto a single unit output layer, and squash it with a sigmoid:
model.add(Dense(1))
model.add(Activation('sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer='rmsprop')
model.fit(X_train, y_train, batch_size=batch_size,
nb_epoch=nb_epoch, show_accuracy=True,
validation_data=(X_test, y_test))
运行这个例子,在K520 GPU上是100s一次循环,我电脑显卡型号为GeForce GT 520M,大概需要175s一次循环,不过比在cpu上运行快多啦,在我这四年前旧电脑cpu上运行差不多要一个小时。